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Linear Models and Inference
Linear Regression

Starting point for most modeling problems
Two flavors: ML (loss-based) and classical
(model/likelihood-based)
The latter offers solid inference framework based on
probability and statistical theory
Former is algorithmic (more flexible in certain cases) and
perhaps more popular in industry
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Linear Models and Inference
Maximum Likelihood Estimation

y = X ′β + ε

ε ∼ N(0,Σ)
(1)

We wish to solve for the set of parameters that maximize
the likelihood of the data

i.e., the parameters that best explain the underlying
phenomenom

l(D; θ) = log

(
n∏
i=1

P (yi|xi, θ)

)
θ̂ = argmaxθ∈Rp l(D; θ)

(2)

Then we build CIs for our parameters, our predictions, etc.
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Linear Models and Inference
Bayesian Estimation

MLE above gives us distributions and CIs for the
parameters βs
Why not imbue them with a prior probability distribution
right out of the bat? (Wakefield, 2013)

β ∼ P?

This is done for regularization, numerical stability, more
rigurous inference, better science, expensive data
acquisition

P (θ|D) =
P (D|θ)P (θ)∫
P (D|θ)P (θ)dθ

∝ P (D|θ)P (θ)

(3)

MCMC! (Rosenthal, 2009)
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Linear Models and Inference
5 Mins on Bayesian Inference

Imagine you encounter an arbitrary coin on the ground and
you wonder whether it is fair or not.
The outcome (Y) is binary and we can encode it as
following:

Y =

{
1 if "Heads"
0 if "Tails"

In fact, we can assert Y ∼ bernoulli(θ) (our likelihood) and
we indicate "fairness" as θ = 50%.
We have a model of reality! Now we proceed to experiment
and observe a sample of Y’s.
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Linear Models and Inference
5+ Mins on Bayesian Inference

Behold! We throw the coin K=4 times and we get
{0,0,0,0} (all "Tails").
As frequentists, we can easily devise the maximum
likelihood estimator for θ as

θ̂ML =

K∑
i

yi
K

(the sample proportion!)
Then θ̂ML = 0 in our scenario.

0 probability of attaining "Heads"?
This is too extreme! Both sides of the coin should have
similar surface area...
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Linear Models and Inference
Ok, 5++ Mins on Bayesian Inference

Let’s adopt an alternative approach by expressing our
prior belief about this coin.
I believe the coin is most likely to be fair (from experience),
but I believe there to be a smaller chance that it is not.
Our "fairness" parameter θ must lie in [0, 1]

Use a beta prior! θ ∼ beta(a, b)
This prior is appropriate because it is defined on [0, 1]
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Linear Models and Inference
End of Coin Toss

Note how for a = b ∈ R+, P (θ) is symmetric at 0.5
(Fairness)
I set a = b = 5 and sample from my posterior dist P (θ|D)
(3)

Stan gives me a posterior mean of 0.36 > 0
However, 95% credibility interval (0.14, 0.61) 3 0.5
We can tighten the CI with more observations and
"smarter" priors
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Linear Models and Inference
Priors!

What are good priors?
Tractability? Conjugates!
Scientific relevance
Regularization

Ideally, priors should come without ever looking at data
Uninformative (flat) priors
Weakly informative priors
Informative priors (Usually based on expert opinion or solid
scientific knowledge)

PC Framework! (Simpson et al, 2017)
KL discrepancy to measure the increased complexity
introduced by ψ > 0
P (µ > u) = α for base N(0, 1) and upgrade N(µ, 1), µ > 0

Sergio E. Betancourt (@sergiosonline) Bayesian Hierarchical Models and INLA 10 / 25



Linear Models and Inference
Case Study: Road Safety in the City of Toronto

Conclusion

Linear Models and Inference
Hierarchical Models

Data is not always homogenenous, nor every class of
interest is represented in a balanced way

Individuals have different biologies
Schools have different demographies, funding, quality of
teaching, etc.
Neighborhoods have different densities, infrastructure, etc.
Firms have different idiosyncrasies

In real life independence assumption usually goes out the
window
We can allow for and make use of these differences in
hierarchies/clusters/groupings

Latent variables!
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Introduction

Road safety is close to all of us
At any point in a given day we commute as bikers,
pedestrians, drivers, etc.

In the last five years, in the City of Toronto, 190 pedestrians
and 16 cyclists were killed in collisions with vehicles
We examined road safety in the City of Toronto from 2007
to 2017, exploring the areas with highest risk of a traffic
incident, controlling for different fixed factors,
neighborhoods, and time
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Introduction
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Toronto Safety
Dataset
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Toronto Safety
IDE: Existing Visualization
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Toronto Safety
IDE: Our App

Created a webapp with Shiny for visualizing accidents by
different filters (time, parties involved, weather, etc)
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Toronto Safety
IDE
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Modeling
Bayesian Hierarchical GAM

Yijt ∼ bernoulli(πijt)
logit(πijt) = Xijtβ + Uj + Vt + f(Wt)

Uj ∼ N(0, σ2U ) (Residual Neighborhood Component)

Vt ∼ N(0, σ2V ) (Residual Time Component)

Wt+1 −Wt ∼ N(0, σ2W ) (RW1 - Time Trend Component)
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Results
Fixed Effects

Objective: Estimate the odds of fatality, subject to being in a
vehicular accident, accounting for differences across
neighborhoods and time
Results:

Odds of fatality increasing till mid-2016, then slowly falling
(Vision Zero?)
Expressway: +73% odds of fatality
Traffic Sign (stop, pedestrian crossing): -13% odds of
fatality
Traffic Light: -46% odds of fatality
Pedestrian not involved: -38% odds of fatality
+1 mm of precipitation: -2% odds of fatality
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Results
Priors-Posteriors on Hierarchical Parameters
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Results
Time Trend Effect
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Results
Neighborhood Random Effects
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Results
Discussion

Interesting time modelling!
Trend component shows semblance of seasonality, but the
imbalance and small amount of data did not allow us to fit
this

Not great in explaining neighborhood variations
No inputs to model describing road density, road
infrastructure, neighborhood density, traffic intensities
through the day

We can strenghten inference with a spatio-temporal model
(HARD!)

We tried this as a (Log-Cox Gaussian) point process but
current spatial data not available (very expensive)
Satellite data?

Need better data for both
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Conclusion
Some thoughts

Bayesian inference and computation have recently enjoyed
a splendid renaissance with better computing HW/SW

more involved than reg MLE or many ML implementations
LOTS of active research into Bayesian DL and RL

Causal Inference
Bayesian optimization of hyperparams (AlphaGo)
Multi-task learning
Exploration in RL
Efficient, computationally stable MCMC (HMC)

Most people are exposed to MLE only in their
undergraduate studies and in industry...
For full Bayesian methodology, and greater flexibility, use
stan (Carpenter et al., 2017)
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