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Linear Models and Inference

Linear Regression

e Starting point for most modeling problems

e Two flavors: ML (loss-based) and classical
(model/likelihood-based)

o The latter offers solid inference framework based on
probability and statistical theory

e Former is algorithmic (more flexible in certain cases) and
perhaps more popular in industry
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Linear Models and Inference

Maximum Likelihood Estimation

y=X'B+e
e~ N(0,%) W)

@ We wish to solve for the set of parameters that maximize
the likelihood of the data

e i.e., the parameters that best explain the underlying
phenomenom

I(D;0) = log (H P(y'|a", 0))
=1 (2)

0 = argmaxycrpl(D; 0)
@ Then we build CIs for our parameters, our predictions, etc.
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Linear Models and Inference

Bayesian Estimation

o MLE above gives us distributions and Cls for the
parameters [3s

@ Why not imbue them with a prior probability distribution

right out of the bat? (Wakefield, 2013)
o B~ P?

@ This is done for regularization, numerical stability, more
rigurous inference, better science, expensive data
acquisition

P(DI|6)P(6
p(o|D) — - PDIOPO)
J P(D|0)P(6)do (3)
x P(DI|0)P(6)

e MCMC! (Rosenthal, 2009)
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5 Mins on Bayesian Inference

o Imagine you encounter an arbitrary coin on the ground and
you wonder whether it is fair or not.

@ The outcome (Y) is binary and we can encode it as
following:
v — 1 if "Hea.uds”
0 if "Tails"
e In fact, we can assert Y ~ bernoulli(d) (our likelihood) and
we indicate "fairness" as 6 = 50%.

o We have a model of reality! Now we proceed to experiment
and observe a sample of Y’s.

Sergio E. Betancourt (@sergiosonline) Bayesian Hierarchical Models and INLA 6 /25



Linear Models and Inference
Case Study: Road Safety in the City of Toronto
Conclusion

Linear Models and Inference

5+ Mins on Bayesian Inference

e Behold! We throw the coin K=4 times and we get
{0,0,0,0} (all "Tails").

o As frequentists, we can easily devise the maximum
likelihood estimator for 6 as

K
i Yi
b= 2
ML o
(the sample proportion!)

@ Then 05,7, = 0 in our scenario.

o 0 probability of attaining "Heads"?
o This is too extreme! Both sides of the coin should have
similar surface area...
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Linear Models and Inference
Ok, 5++ Mins on Bayesian Inference

o Let’s adopt an alternative approach by expressing our
prior belief about this coin.

o I believe the coin is most likely to be fair (from experience),
but I believe there to be a smaller chance that it is not.

e Our "fairness" parameter 6 must lie in [0, 1]

o Use a beta prior! 6 ~ beta(a, b)
o This prior is appropriate because it is defined on [0, 1]
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Linear Models and Inference
End of Coin Toss

e Note how for a = b € R*, P(6) is symmetric at 0.5
(Fairness)
o I set a = b= "5 and sample from my posterior dist P(6|D)

(3)
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e Stan gives me a posterior mean of 0.36 > 0
o However, 95% credibility interval (0.14, 0.61) > 0.5
o We can tighten the CI with more observations and
"smarter" priors
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Linear Models and Inference

Priors!

e What are good priors?
o Tractability? Conjugates!
e Scientific relevance
e Regularization
o Ideally, priors should come without ever looking at data
o Uninformative (flat) priors
o Weakly informative priors
o Informative priors (Usually based on expert opinion or solid
scientific knowledge)
o PC Framework! (Simpson et al, 2017)

o KL discrepancy to measure the increased complexity
introduced by ¢ > 0
o P(y > u) = a for base N(0,1) and upgrade N(u,1), 4 >0
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Linear Models and Inference
Hierarchical Models

e Data is not always homogenenous, nor every class of
interest is represented in a balanced way

o Individuals have different biologies
e Schools have different demographies, funding, quality of
teaching, etc.
e Neighborhoods have different densities, infrastructure, etc.
o Firms have different idiosyncrasies
o In real life independence assumption usually goes out the
window
@ We can allow for and make use of these differences in
hierarchies/clusters/groupings
o Latent variables!
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Introduction

o Road safety is close to all of us
e At any point in a given day we commute as bikers,
pedestrians, drivers, etc.

o In the last five years, in the City of Toronto, 190 pedestrians
and 16 cyclists were killed in collisions with vehicles

o We examined road safety in the City of Toronto from 2007
to 2017, exploring the areas with highest risk of a traffic
incident, controlling for different fixed factors,
neighborhoods, and time
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Introduction
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Toronto Safety

Dataset

4 Automobile accident-level data each row

i~ Toronto Police Service representing a person involved from 2007 -
| W PUBLIC SAFETY DATA PORTAL 2017

2016 and 2011 Census population by
I * I Statistics  Statistique neighborhood
Canada Canada

Daily weather measurements for Toronto taken
I * Government  Gouvernement in University of Toronto
of Canada du Canada

GEOTAB /7 DATA kit
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Toronto Safety

IDE: Existing Visualization

https://www.cp24.com/ne\
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Fatal #: 10 - Meadowvale Road and Dean Park Road - 2/1/2019
Fatal #: 14 - Sheppard Avenue and Sunfield Road - 3/23/2019

Fatal #: 17 - Victoria Park Avenue and Finch Avenue East - 4/6/2019
Fatal #: 18 - Brimley Road and McNicoll Avenue - 5/10/2019

Fatal #: 2 - McCowan Road and Ellesmere Road - 1/12/2019

Fatal #: 22 - Sheppard Avenue East and Highway 404 - 6/13/2019
Fatal #: 24 - Lawrence Avenue East and Golf Club Road - 6/22/2019
Fatal #: 31 - Warden Avenue and Sylla Avenue - 8/3/2019

Fatal #: 7 - Millwood Road and Laird Drive - 1/19/2019

(4]
(4]
(4]
(4]
(4]
(5]
(4]
(4]
(4]

Motoreyclist 4 v

BEE bocsenger 2 v

Pedestrian 17 v

Sergio E. Betancourt (@sergiosonline) Bayesian Hierarchical Models and INLA 15 /25



Linear Models and Inference
Case Study: Road Safety in the City of Toronto
Conclusion

Toronto Safety
IDE: Our App

o Created a webapp with Shiny for visualizing accidents by
different filters (time, parties involved, weather, etc)

Admission/Inte dio Demo - Shiny

http://127.0.0.1:4469 Open in Browser 45 Publish ~

Road Accidents in Toronto

Interactive Map | Frequency Table
Create Map
. + 2016 Population
Date of accident _ -10,000
2007-01-01 to 2017-12-30 -20,000
- 30,000
Accident Fatality 40,000
Fatal ) 50,000
& 60,000
Non-Fatal Injury -
.
Other Vehicles Involved LA §
> ® Accident Class
Al - e W ratal
Weather Condition
.
Al - .
-
Visibility
All v Leaflet | © OpenStresthap contributors, CC-BY-SA, @ OpenStreetMap © CartoDB.
Show 25 % entries Search:
Road Class
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Modeling
Bayesian Hierarchical GAM

Yijt ~ bernoulli(m;j¢)
logit(mije) = Xije 8+ U; + Vi + f(Wy)
U;j ~ N(0,0%) (Residual Neighborhood Component)
Vi ~ N(0,0%) (Residual Time Component)
W1 — Wy ~ N(0,0%,) (RWI - Time Trend Component)
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Results
Fixed Effects

Objective: Estimate the odds of fatality, subject to being in a
vehicular accident, accounting for differences across
neighborhoods and time
Results:

e Odds of fatality increasing till mid-2016, then slowly falling
(Vision Zero?)
Expressway: +73% odds of fatality

o

o Traffic Sign (stop, pedestrian crossing): -13% odds of
fatality

o Traffic Light: -46% odds of fatality

o Pedestrian not involved: -38% odds of fatality

e +1 mm of precipitation: -2% odds of fatality
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Results

Discussion

o Interesting time modelling!

o Trend component shows semblance of seasonality, but the
imbalance and small amount of data did not allow us to fit
this

o Not great in explaining neighborhood variations

e No inputs to model describing road density, road
infrastructure, neighborhood density, traffic intensities
through the day

o We can strenghten inference with a spatio-temporal model
(HARD!)

o We tried this as a (Log-Cox Gaussian) point process but
current spatial data not available (very expensive)

o Satellite data?

@ Need better data for both
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Some thoughts

o Bayesian inference and computation have recently enjoyed
a splendid renaissance with better computing HW /SW

e more involved than reg MLE or many ML implementations
o LOTS of active research into Bayesian DL and RL

Causal Inference

Bayesian optimization of hyperparams (AlphaGo)
Multi-task learning

Exploration in RL

Efficient, computationally stable MCMC (HMC)

@ Most people are exposed to MLE only in their
undergraduate studies and in industry...

®© 6 ¢ o ¢

e For full Bayesian methodology, and greater flexibility, use
stan (Carpenter et al., 2017)
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